Affiliation:
1. School of Information Security Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract
The Internet of Things has broad application in military field, commerce, environmental monitoring, and many other fields. However, the open nature of the information media and the poor deployment environment have brought great risks to the security of wireless sensor networks, seriously restricting the application of wireless sensor network. Internet of Things composed of wireless sensor network faces security threats mainly from Dos attack, replay attack, integrity attack, false routing information attack, and flooding attack. In this paper, we proposed a new intrusion detection system based onK-nearest neighbor (K-nearest neighbor, referred to as KNN below) classification algorithm in wireless sensor network. This system can separate abnormal nodes from normal nodes by observing their abnormal behaviors, and we analyse parameter selection and error rate of the intrusion detection system. The paper elaborates on the design and implementation of the detection system. This system has achieved efficient, rapid intrusion detection by improving the wireless ad hoc on-demand distance vector routing protocol (Ad hoc On-Demand Distance the Vector Routing, AODV). Finally, the test results show that: the system has high detection accuracy and speed, in accordance with the requirement of wireless sensor network intrusion detection.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,General Computer Science,Signal Processing
Cited by
206 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献