Enhancing K-nearest neighbor algorithm: a comprehensive review and performance analysis of modifications

Author:

Halder Rajib KumarORCID,Uddin Mohammed NasirORCID,Uddin Md. AshrafORCID,Aryal SunilORCID,Khraisat AnsamORCID

Abstract

AbstractThe k-Nearest Neighbors (kNN) method, established in 1951, has since evolved into a pivotal tool in data mining, recommendation systems, and Internet of Things (IoT), among other areas. This paper presents a comprehensive review and performance analysis of modifications made to enhance the exact kNN techniques, particularly focusing on kNN Search and kNN Join for high-dimensional data. We delve deep into 31 kNN search methods and 12 kNN join methods, providing a methodological overview and analytical insight into each, emphasizing their strengths, limitations, and applicability. An important feature of our study is the provision of the source code for each of the kNN methods discussed, fostering ease of experimentation and comparative analysis for readers. Motivated by the rising significance of kNN in high-dimensional spaces and a recognized gap in comprehensive surveys on exact kNN techniques, our work seeks to bridge this gap. Additionally, we outline existing challenges and present potential directions for future research in the domain of kNN techniques, offering a holistic guide that amalgamates, compares, and dissects existing methodologies in a coherent manner. Graphical Abstract

Funder

Air Force Office of Scientific Research under

Publisher

Springer Science and Business Media LLC

Reference148 articles.

1. Wikipedia contributors. K-nearest neighbors algorithm. 2023. https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm.

2. Andoni A, Indyk P. Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions. 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), Berkeley, CA, USA, 2006. https://doi.org/10.1109/focs.2006.49.

3. Bawa M, Condie T, Ganesan P. LSH forest. In Proceedings of the 14th International Conference on World Wide Web (WWW ‘05). 2005. https://doi.org/10.1145/1060745.1060840

4. Lv Q, Josephson W, Wang Z, Charikar M, Li K. Multi-probe LSH: efficient indexing for high-dimensional similarity search. In Proceedings of the 33rd International Conference on Very Large Data Bases (VLDB ‘07), 2007. 950–961. https://www.csd.uoc.gr/~hy561/Data/Papers/p950-lv.pdf.

5. Jeǵou H, Douze M, Schmid C. Product quantization for nearest neighbor search. IEEE Trans Pattern Anal Mach Intell. 2011;33(1):117–28. https://doi.org/10.1109/tpami.2010.57.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3