Research on Degradation State Recognition of Planetary Gear Based on Multiscale Information Dimension of SSD and CNN

Author:

Chen Xihui1,Peng Liping1ORCID,Cheng Gang2,Luo Chengming1ORCID

Affiliation:

1. College of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, China

2. School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China

Abstract

Planetary gear is the key part of the transmission system for large complex electromechanical equipment, and in general, a series of degradation states are undergone and evolved into a local fatal fault in its full life cycle. So it is of great significance to recognize the degradation state of planetary gear for the purpose of maintenance repair, predicting development trend, and avoiding sudden fault. This paper proposed a degradation state recognition method of planetary gear based on multiscale information dimension of singular spectrum decomposition (SSD) and convolutional neural network (CNN). SSD can automatically realize the embedding dimension selection and component grouping segmentation, and the original vibration signal being nonlinear and nonstationary can be decomposed into a series of singular spectrum decomposition components (SSDCs), adaptively. Then, the multiscale information dimension which combines multiscale analysis and fractal information dimension is proposed for quantifying and extracting the feature information contained in each SSDC. Finally, CNN is used to achieve the effective recognition of the degradation state of planetary gear. The experimental results show that the proposed method can accurately recognize the degradation state of planetary gear, and the overall recognition rate is up to 97.2%, of which the recognition rate of normal planetary gear reaches 100%.

Funder

The Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3