Affiliation:
1. College of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, China
2. School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China
Abstract
Planetary gear is the key part of the transmission system for large complex electromechanical equipment, and in general, a series of degradation states are undergone and evolved into a local fatal fault in its full life cycle. So it is of great significance to recognize the degradation state of planetary gear for the purpose of maintenance repair, predicting development trend, and avoiding sudden fault. This paper proposed a degradation state recognition method of planetary gear based on multiscale information dimension of singular spectrum decomposition (SSD) and convolutional neural network (CNN). SSD can automatically realize the embedding dimension selection and component grouping segmentation, and the original vibration signal being nonlinear and nonstationary can be decomposed into a series of singular spectrum decomposition components (SSDCs), adaptively. Then, the multiscale information dimension which combines multiscale analysis and fractal information dimension is proposed for quantifying and extracting the feature information contained in each SSDC. Finally, CNN is used to achieve the effective recognition of the degradation state of planetary gear. The experimental results show that the proposed method can accurately recognize the degradation state of planetary gear, and the overall recognition rate is up to 97.2%, of which the recognition rate of normal planetary gear reaches 100%.
Funder
The Fundamental Research Funds for the Central Universities
Subject
Multidisciplinary,General Computer Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献