Multivariate Multiscale Higuchi Fractal Dimension and Its Application to Mechanical Signals

Author:

Li Yuxing12ORCID,Zhang Shuai1,Liang Lili12,Ding Qiyu1

Affiliation:

1. School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China

2. Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing, Xi’an University of Technology, Xi’an 710048, China

Abstract

Fractal dimension, as a common nonlinear dynamics metric, is extensively applied in biomedicine, fault diagnosis, underwater acoustics, etc. However, traditional fractal dimension can only analyze the complexity of the time series given a single channel at a particular scale. To characterize the complexity of multichannel time series, multichannel information processing was introduced, and multivariate Higuchi fractal dimension (MvHFD) was proposed. To further analyze the complexity at multiple scales, multivariate multiscale Higuchi fractal dimension (MvmHFD) was proposed by introducing multiscale processing algorithms as a technology that not only improved the use of fractal dimension in the analysis of multichannel information, but also characterized the complexity of the time series at multiple scales in the studied time series data. The effectiveness and feasibility of MvHFD and MvmHFD were verified by simulated signal experiments and real signal experiments, in which the simulation experiments tested the stability, computational efficiency, and signal separation performance of MvHFD and MvmHFD, and the real signal experiments tested the effect of MvmHFD on the recognition of multi-channel mechanical signals. The experimental results show that compared to other indicators, A achieves a recognition rate of 100% for signals in three features, which is at least 17.2% higher than for other metrics.

Funder

Natural Science Foundation of Shaanxi Province

National Science Foundation of China

Xi’an University of Technology Excellent Seed Fund

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Reference33 articles.

1. How long is the coast of Britain? Statistical self-similarity and fractal dimension;Mandelbrot;Science,1967

2. Mandelbrot, B. (1975). Les Objects Fractals: Forme Hasard et Dimension, Flammarion.

3. Mandelbrot, B. (1977). Fractal Object: Form, Chance and Dimension, Freeman.

4. Li, Y., Zhou, Y., and Jiao, S. (2024). Variable-Step Multiscale Katz Fractal Dimension: A New Nonlinear Dynamic Metric for Ship-Radiated Noise Analysis. Fractal Fract., 8.

5. Snake Optimization-Based Variable-Step Multiscale Single Threshold Slope Entropy for Complexity Analysis of Signals;Li;IEEE Trans. Instrum. Meas.,2023

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3