Retinal Levels of Amyloid Beta Correlate with Cerebral Levels of Amyloid Beta in Young APPswe/PS1dE9 Transgenic Mice before Onset of Alzheimer’s Disease

Author:

Mei Xi1ORCID,Yang Mengxiang2,Zhu Lina3,Zhou Qi1,Li Xingxing1,Chen Zhongming1,Zou Chenjun1ORCID

Affiliation:

1. Kangning Hospital of Ningbo, Ningbo City, Zhejiang Province, China

2. Ningbo University, Ningbo City, Zhejiang Province, China

3. Weifang Medical University, Weifang City, Shandong Province, China

Abstract

Objectives. Retina abnormalities are related to cognitive disorders in patients with Alzheimer’s disease (AD). Retinal amyloid beta (Aβ) can be labeled by curcumin. We measured Aβ content in the cerebrum and retina of APPswe/PS1dE9 (APP) transgenic mice with early age to investigate the correlation between cerebrum and retina. Methods. APP mice and age-matched wild-type mice were investigated every month from age 2 months to 6 months to assess changes in Aβ content in the retina and cerebrum. At the beginning of each month, mice were fed a curcumin diet (50 mg/kg/day) for 7 consecutive days. The Aβ levels in the retina and cerebrum were measured by ELISAs. Correlations were identified between retinal and cerebral Aβ contents using Pearson’s correlation. Results. In the absence of curcumin, there was a significant correlation between Aβ contents in the retina and cerebrum of APP mice (r=0.7291, P=0.0014). With increasing age, Aβ-mediated degenerative change in the cerebrum (P<0.001 in 5 months) and retina (P<0.01 in 5 months) increased significantly. The inhibitory effect of curcumin on the Aβ level was significant in the cerebrum (P<0.001) and retina (P<0.01) of older APP mice in the early stage of life. Conclusion. We observed a significant correlation between the Aβ content in the retina and Aβ content in the cerebrum of APP mice. Our data suggest an appropriate time to measure retinal Aβ. Although curcumin can label Aβ in the retina, it also suppresses Aβ levels and weakens the degree of correlation between Aβ in cerebrum and retina tissues.

Funder

Natural Science Foundation of Ningbo

Publisher

Hindawi Limited

Subject

Neurology (clinical),Neurology,General Medicine,Neuropsychology and Physiological Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3