Effect Improved for High-Dimensional and Unbalanced Data Anomaly Detection Model Based on KNN-SMOTE-LSTM

Author:

Bao Fuguang1234ORCID,Wu Yongqiang2,Li Zhaogang2,Li Yongzhao23,Liu Lili2,Chen Guanyu4

Affiliation:

1. Contemporary Business and Trade Research Center, Zhejiang Gongshang University, Hangzhou 310018, China

2. Zhejiang Wellsun Intelligent Technology Co.,Ltd., Hangzhou 310018, China

3. School of Telecommunication Engineering, Xidian University, Xian 710126, China

4. School of Management Science & Engineering, Zhejiang Gongshang University, Hangzhou 310018, China

Abstract

High-dimensional and unbalanced data anomaly detection is common. Effective anomaly detection is essential for problem or disaster early warning and maintaining system reliability. A significant research issue related to the data analysis of the sensor is the detection of anomalies. The anomaly detection is essentially an unbalanced sequence binary classification. The data of this type contains characteristics of large scale, high complex computation, unbalanced data distribution, and sequence relationship among data. This paper uses long short-term memory networks (LSTMs) combined with historical sequence data; also, it integrates the synthetic minority oversampling technique (SMOTE) algorithm and K-nearest neighbors (kNN), and it designs and constructs an anomaly detection network model based on kNN-SMOTE-LSTM in accordance with the data characteristic of being unbalanced. This model can continuously filter out and securely generate samples to improve the performance of the model through kNN discriminant classifier and avoid the blindness and limitations of the SMOTE algorithm in generating new samples. The experiments demonstrated that the structured kNN-SMOTE-LSTM model can significantly improve the performance of the unbalanced sequence binary classification.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3