Wind turbine fault detection and isolation robust against data imbalance using KNN

Author:

Fazli Ali1,Poshtan Javad1ORCID

Affiliation:

1. Department of Electrical Engineering Iran University of Science and Technology Tehran Iran

Abstract

AbstractDue to the difficulties of system modeling, nonlinearity effects, uncertainties, and the availability of Wind Turbines (WTs) SCADA system data, data‐driven Fault Detection and Isolation (FDI) methods for WTs have received increasing attention. In this paper, using the wind turbine SCADA data, an effective FDI scheme is proposed using the K‐Nearest Neighbors (KNN) classifier. The operational data set is labeled by the status and warning data sets, and the labeled operational data set, after eliminating invalid data, feature selection, and standardization, is used for training and validation of the FDI model. Data imbalance, which is common in real data sets, does not affect the performance of the proposed method, hence there is no need for data balancing methods in this algorithm and the performance is not deteriorated by occurring false alarms. Therefore, the proposed method has provided impressive performance in FDI compared with previous research on this data set. Also, many of the fault classes addressed in this paper were not considered in previous works on this data set.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3