A Self-Learning Sensor Fault Detection Framework for Industry Monitoring IoT

Author:

Liu Yu1ORCID,Yang Yang2,Lv Xiaopeng3,Wang Lifeng4

Affiliation:

1. State Key Laboratory of Software Development Environment, Beihang University, Beijing 100191, China

2. Information Center of Guangdong Power Grid Corporation, China Southern Power Grid, Guangzhou 510620, China

3. Beijing Guotie Huachen Communication & Infomation Technology Co., Ltd., Beijing 10070, China

4. Beijing Electronic Science and Technology Institute, Beijing 100070, China

Abstract

Many applications based on Internet of Things (IoT) technology have recently founded in industry monitoring area. Thousands of sensors with different types work together in an industry monitoring system. Sensors at different locations can generate streaming data, which can be analyzed in the data center. In this paper, we propose a framework for online sensor fault detection. We motivate our technique in the context of the problem of the data value fault detection and event detection. We use the Statistics Sliding Windows (SSW) to contain the recent sensor data and regress each window by Gaussian distribution. The regression result can be used to detect the data value fault. Devices on a production line may work in different workloads and the associate sensors will have different status. We divide the sensors into several status groups according to different part of production flow chat. In this way, the status of a sensor is associated with others in the same group. We fit the values in the Status Transform Window (STW) to get the slope and generate a group trend vector. By comparing the current trend vector with history ones, we can detect a rational or irrational event. In order to determine parameters for each status group we build a self-learning worker thread in our framework which can edit the corresponding parameter according to the user feedback. Group-based fault detection (GbFD) algorithm is proposed in this paper. We test the framework with a simulation dataset extracted from real data of an oil field. Test result shows that GbFD detects 95% sensor fault successfully.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Insight Survey on Sensor Errors and Fault Detection Techniques in Smart Spaces;Computer Modeling in Engineering & Sciences;2024

2. Feature Selection for Fault Detection in Industrial Processes Based on the SHAP Algorithm;2023 15th IEEE International Conference on Industry Applications (INDUSCON);2023-11-22

3. Forecasting failure rate of IoT devices: A deep learning way to predictive maintenance;Computers and Electrical Engineering;2023-09

4. Understanding of Network Resiliency in Communication Networks with its Integration in Internet of Things - A Survey;Electrica;2023-04-05

5. Security in Internet of Things;Protecting User Privacy in Web Search Utilization;2023-03-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3