Affiliation:
1. School of Automation, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract
The state of charge (SOC) plays an important role in battery management systems (BMS). However, SOC cannot be measured directly and an accurate state estimation is difficult to obtain due to the nonlinear battery characteristics. In this paper, a method of SOC estimation with parameter updating by using the dual square root cubature Kalman filter (DSRCKF) is proposed. The proposed method has been validated experimentally and the results are compared with dual extended Kalman filter (DEKF) and dual square root unscented Kalman filter (DSRUKF) methods. Experimental results have shown that the proposed method has the most balance performance among them in terms of the SOC estimation accuracy, execution time, and convergence rate.
Subject
General Engineering,General Mathematics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献