State of Charge Estimation for Lithium‐Ion Batteries Based on an Adaptive Fractional‐Order Cubature Kalman Filter

Author:

Chai Haoyu1,Gao Zhe12ORCID,Miao Yue1,Jiao Zhiyuan1

Affiliation:

1. School of Mathematics and Statistics Liaoning University Shenyang 110036 P. R. China

2. College of Light Industry Liaoning University Shenyang 110036 P. R. China

Abstract

AbstractBased on the fractional‐order model (FOM), this paper proposes an adaptive fractional‐order cubature Kalman filter (AFCKF) method for state of charge (SOC) estimation of a lithium‐ion battery (LIB). Firstly, a FOM with two constant phase elements is built, which can accurately represent the dynamic features of a LIB with a higher accuracy. Secondly, the adaptive estimations of the coefficients in the measurement equation are achieved by a linear Kalman filter algorithm, which avoids the calculation of the relationship between the open‐circuit voltage and SOC. Thirdly, an augmented state equation including the SOC, the fractional‐orders and parameters in the FOM is investigated by introducing the augmented vector method, and the state information is estimated online via the AFCKF algorithm. The algorithm requires a little computational burden while ensuring the estimation accuracy and is well adapted to complex working conditions. Besides, this study fully considers the impact of noises on the estimation effect. To better overcome the disturbances caused by unknown noises and further improve the precision and stability of the algorithm, an adaptive estimation method of the noise covariance matrices is achieved. Finally, the experimental findings are given to reveal that the proposed method can be effectively used to different working conditions and the estimation accuracy is better than the adaptive integer‐order cubature Kalman filter.

Funder

Scientific Research Fund of Liaoning Provincial Education Department

Natural Science Foundation of Liaoning Province

Publisher

Wiley

Subject

Multidisciplinary,Modeling and Simulation,Numerical Analysis,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3