Prediction of MicroRNA and Gene Target in Synovium-Associated Pain of Knee Osteoarthritis Based on Canonical Correlation Analysis

Author:

Wang Haiming1,Hu Yue23,Xie Yujie23,Wang Li23,Wang Jianxiong23,Lei Lei23,Huang Maomao23,Zhang Chi23ORCID

Affiliation:

1. Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 Henan, China

2. Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China

3. Rehabilitation Medicine, Southwest Medical University, Luzhou, Sichuan, China

Abstract

Inflammation plays a central role in knee osteoarthritis (OA) pathogenesis (C. R. Scanzello, 2017). The synovial membrane inflammation is associated with disease progression and represents a primary source of agony in knee OA (L. A. Stoppiello et al., 2014). Many inflammatory mediators may have biomarker utility. To identify synovium related to knee OA pain biomarkers, we used canonical correlation analysis to analyze the miRNA-mRNA dual expression profiling data and extracted the miRNAs and mRNAs. After identifying miRNAs and mRNAs, we built an interaction network by integrating miRWalk2.0. Then, we extended the network by increasing miRNA-mRNA pairs and identified five miRNAs and four genes (TGFBR2, DST, TBXAS1, and FHLI) through the Spearman rank correlation test. For miRNAs involved in the network, we further performed the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses, whereafter only those mRNAs overlapped with the Online Mendelian Inheritance in Man (OMIM) genetic database were analyzed. Receiver operating characteristic (ROC) curve and support vector machine (SVM) classification were taken into the analysis. The results demonstrated that all the recognized miRNAs and their gene targets in the network might be potential biomarkers for synovial-associated pain in knee OA. This study predicts the underlying risk biomarkers of synovium pain in knee OA.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3