PINN-Based Method for Predicting Flow Field Distribution of the Tight Reservoir after Fracturing

Author:

Pu Jun12ORCID,Song Wenfang12ORCID,Wu Junlai12ORCID,Gou Feifei12ORCID,Yin Xia12ORCID,Long Yunqian3ORCID

Affiliation:

1. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100083, China

2. Sinopec Exploration & Production Research Institute, Beijing 100083, China

3. School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China

Abstract

The physical-informed neural network (PINN) model can greatly improve the ability to fit nonlinear data with the incorporation of prior knowledge, which endows traditional neural networks with interpretability. Considering the seepage law in the tight reservoir after hydraulic fracturing, a model based on PINN and two-dimensional seepage physical equations was proposed, which can effectively predict the flow field distribution of the tight reservoir after fracturing. Firstly, the dataset was obtained based on physical and numerical models of the tight reservoirs developed by volume fracturing. Furthermore, coupling the neural networks and the two-dimensional unsteady seepage equation, a PINN model was developed to predict the flow field distribution of the tight reservoir. Finally, a systematic study was performed concerning the noise corruption levels, training iterations, and training sample size that affect the prediction results of PINN models. Besides, a comparison between PINN and traditional deep neural networks (DNN) was presented. The results show that the DNN model was not only sensitive to noisy data but also more vulnerable to overfitting as the training iterations increase. In addition, the prediction accuracy cannot be guaranteed when the samples are inadequate (<500). In contrast, the PINN model was less affected by noise and training iterations and thus indicates greater stability. Moreover, the PINN model outperforms the DNN model in the case of inadequate samples attributing to prior knowledge. This study confirms that the adopted PINN model can provide algorithmic support for the accurate prediction of flow field distribution of the tight reservoirs.

Funder

Zhoushan Science and Technology Project

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3