Rate-Transient Analysis of a Constant-Bottomhole-Pressure Multihorizontal Well Pad with a Semianalytical Single-Phase Method

Author:

Chu Hongyang1,Liao Xinwei2,Chen Zhiming2,John Lee W. John3

Affiliation:

1. China University of Petroleum and Texas A&M University

2. China University of Petroleum

3. Texas A&M University

Abstract

Summary Because of readily available production data, rate-transient analysis (RTA) is an important method to predict productivity and reserves, and for reservoir and completion characterization in unconventional reservoirs. In addition, multihorizontal well pads are a common development method for unconventional reservoirs. Close well spacing between multifractured horizontal wells (MFHWs) in the multiwell pads makes interference from adjacent MFHWs especially significant. For RTA of production data from multihorizontal well pads, the influence of adjacent MFHWs cannot be ignored. In this work, we propose a semianalytic RTA model for the multihorizontal well pad with arbitrary multiple MFHW properties and starting-production times. Combining Laplace transformation and finite-difference analysis, we obtained a general solution of a multiwell mathematical model to use in RTA. Our model is applicable to cases of multiple MFHWs with different bottomhole pressures (BHPs), varying hydraulic-fracture properties, and different starting-production times. In the solutions, we observe bilinear flow, linear flow, transition flow, and multi-MFHW flow. Rate-normalized pressure (RNP) and its derivative are also affected by multi-MFHW flow. Two case studies revealed that the negative effect of interwell interference on the parent-well productivity is closely related to the pressure distribution caused by the production of child wells.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3