English Text Readability Measurement Based on Convolutional Neural Network: A Hybrid Network Model

Author:

Jian Lihua1ORCID,Xiang Huiqun23,Le Guobin23

Affiliation:

1. School of International Education, Hunan University of Medicine, Hunan, Huaihua 418000, China

2. Changsha Vocational and Technical College, Hunan, Changsha 410200, China

3. School of Foreign Languages, Huaihua University, Huaihua 418000, China

Abstract

Text readability is very important in meeting people’s information needs. With the explosive growth of modern information, the measurement demand of text readability is increasing. In view of the text structure of words, sentences, and texts, a hybrid network model based on convolutional neural network is proposed to measure the readability of English texts. The traditional method of English text readability measurement relies too much on the experience of artificial experts to extract features, which limits its practicability. With the increasing variety and quantity of text readability measurement features to be extracted, it is more and more difficult to extract deep features manually, and it is easy to introduce irrelevant features or redundant features, resulting in the decline of model performance. This paper introduces the concept of hybrid network model in deep learning; constructs a hybrid network model suitable for English text readability measurement by combining convolutional neural network, bidirectional long short-term memory network, and attention mechanism network; and replaces manual automatic feature extraction by machine learning, which greatly improves the measurement efficiency and performance of text readability.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3