1. Bal, G., Agam, G., Frieder, O., Frieder, G.: Interactive degraded document enhancement and ground truth generation. In: Yanikoglu BA, Berkner K (eds) Document Recognition and Retrieval XV, SPIE. (2008). https://doi.org/10.1117/12.767203
2. Chen, X., He, X., Yang, J., Wu, Q.: An effective document image deblurring algorithm. In: CVPR 2011. IEEE. (2011). https://doi.org/10.1109/cvpr.2011.5995568
3. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016). https://doi.org/10.1109/tpami.2015.2439281
4. Fang, X., Zhou, Q., Shen, J., Jacquemin, C., Shao, L.: Text image deblurring using kernel sparsity prior. IEEE Trans. Cybern. 50(3), 997–1008 (2018). https://doi.org/10.1109/tcyb.2018.2876511
5. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds) Advances in Neural Information Processing Systems 27, pp. 2672–2680. Curran Associates Inc., http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf (2014)