A Binary Medium Model for Frozen Silty Sand Simplified by Breakage Parameter

Author:

Zhang Shuming12ORCID,Jiang Guanlu12,Cai Junfeng12ORCID,Ye Xiongwei12ORCID,Luo Bin3,Yuan Shengyang12

Affiliation:

1. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China

2. Key Laboratory of High-speed Railway Engineering of Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China

3. College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, China

Abstract

In order to investigate the strength-deformation characteristics of frozen silty sand, the triaxial compressive strength tests of saturated frozen silty sand under different fine particle contents were carried out, and the binary medium theory was introduced to interpret the stress-strain relationship. Due to the characteristics of the existing binary medium model with many parameters and complicated determination method, a simplified binary medium model based on breakage parameter is proposed. The derived model was verified by the triaxial tests of frozen silty sand. The results show that the stress-strain relationship can be divided into three stages with the increase of axial strain, namely, linear elastic deformation stage, plastic deformation stage, and strain softening stage. All three stages can be well explained by the transformation theory of bonded element and frictional element with the binary medium model. In the linear elastic deformation stage, the external stress is mainly borne by the bonded element. In the plastic deformation stage, the stress sharing ratio of the bonded element decreases and that of the frictional element increases. In the strain softening stage, the stress sharing ratio of the bonded element decreases rapidly, while that of the frictional element increases rapidly. Under the same confining pressure, both deviator stress and the maximum values of bulk expansion decrease, while the shear strength decreases linearly with the increase of fine particle content. By comparing the measured deviator stress in triaxial test with the calculated values of binary medium constitutive model simplified by breakage parameter, the proposed model can better simulate the stress-strain relationship of frozen silty sand. The results of the study can provide some theoretical reference for the constitutive model of seasonal frozen soil.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Reference38 articles.

1. Recent research progress and prospect of frozen soil dynamics;D. Chen;Journal of Glaciology and Geocryology,2017

2. Nonlinear Analysis of Stress and Strain in Soils

3. Laboratory and theoretical investigations on the deformation and strength behaviors of artificial frozen soil

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3