Study on triaxial test and constitutive prediction model of frozen silty clay

Author:

Teng Zhen-Chao,Teng Yun-Chao,Liu Jia-Lin,Zhou Ya-Dong,Liu Xiao-Yan,Li Zheng-Wei,Tao Cheng-Yun

Abstract

With the increasing demand for engineering construction in the seasonal frozen area and the background of the Belt and Road Initiative, the frozen soil constitutive model should be studied in depth. At present, the constitutive prediction model of frozen silty clay has many problems, such as complex formula, single model application and poor prediction ability. Random forest optimal model hyperparameter input was very difficult. Particle Swarm Optimization (PSO) was used to optimize the parameters of the number of neurons, dropout and batch_size in the Long-term and Short-Term Memory network (LSTM) structure. The optimization results were 61, 0.09 and 95 respectively. The results showed that the strength tended to be stable after 6,9,6,9 and 9 freeze-thaw cycles under initial moisture content = 25, 22.5, 20, 17.5, and 15%, respectively. After 18 freeze-thaw cycles, the strength decreased by 2.66%, 11.85%, 18.83%, 16.79, and 29.02%, respectively. The predicted values of frozen soil binary medium model (BM), random forest model (RF) and PSO-LSTM model were compared with the measured values under different working conditions, and good accuracy was obtained. The R2 of the PSO-LSTM model test set was trained to more than 98%, and RMSE, MAE and MAPE were also trained to the lowest under the same working conditions. The influencing factors of deviator stress of frozen silty clay were given in order from strong to weak: initial moisture content>strain>confining pressure>number of freeze-thaw cycles. The LSTM optimal combination input parameters were searched by PSO, and the parameter adjustment speed of the model for the data learning process of frozen silty clay was greatly increased, which was conducive to the promotion of other soil constitutive prediction models. A new constitutive prediction model of frozen silty clay was developed using PSO-LSTM algorithm. 15 working conditions had been verified, and the optimal model had high accuracy in the constitutive prediction of frozen silty clay, which provided a good reference for the application of frozen soil engineering in cold regions.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3