Virtual Simulation Analysis of Rigid-Flexible Coupling Dynamics of Shearer with Clearance

Author:

Chen Hongyue12,Zhang Kun1ORCID,Piao Mingbo1,Wang Xin1ORCID,Mao Jun12ORCID,Song Qiushuang3

Affiliation:

1. School of Mechanical Engineering, Liaoning Technical University, No. 88, Yulong Road, Xihe District, Fuxin City, Liaoning Province 123000, China

2. China National Coal Association, Dynamic Research for High-End Complete Integrated Coal Mining Equipment and Big Data Analysis Center, No. 88, Yulong Road, Xihe District, Fuxin City, Liaoning Province 123000, China

3. China Coal Energy Company Limited (China Coal Energy), No. 1, Huangsi Street, Chaoyang District, Beijing City 100120, China

Abstract

A model for virtual simulation analysis of the rigid-flexible coupling of a shearer has been developed with the objective of addressing problems associated with lifetime mismatch and low reliability of pin rows of a scraper conveyor and the corresponding support mechanism of a shearer. Simulations were performed using the experimental roller load as stimulus. Results of the analysis demonstrate that the vertical cutting force on the roller serves to reduce the load on the plane support plates during shearer cutting, and the force on the right plane support plate is considerably smaller compared to that on the left plane support plate along the direction of motion of the shearer. Owing to action of the roller-traction load, loads acting on the two guiding support plates increase significantly along the direction of shearer motion. Mechanical characteristics of the support mechanism were determined through experiments, and the accuracy of the virtual simulation model was verified. Simultaneously, mechanical characteristics of the shearer support mechanism were studied under varying pitch and roll angles. This study was performed to provide a base for analyzing the mechanical characteristics as well as optimizing the structural design of the shearer. Through fatigue-life analysis of the support plate and subsequent optimization of the support plate structure, the life of the guide support plate was found to have been extended by approximately 1.5 times.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3