Quantification of Sterol and Triterpenol Biomarkers in Sediments of the Cananéia-Iguape Estuarine-Lagoonal System (Brazil) by UHPLC-MS/MS

Author:

Bataglion Giovana Anceski12,Koolen Hector Henrique Ferreira3,Weber Rolf Roland4,Eberlin Marcos Nogueira2

Affiliation:

1. Department of Chemistry, Federal University of Amazonas (UFAM), 69077-000 Manaus, AM, Brazil

2. ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil

3. DeMpSter Mass Spectrometry Group, Amazonas State University (UEA), 69050-010 Manaus, AM, Brazil

4. Marine Organic Chemistry Laboratory, Oceanography Institute, University of São Paulo (USP), 05508-120 São Paulo, SP, Brazil

Abstract

Sterols and triterpenols present in sedimentary cores from 12 stations along the Cananéia-Iguape estuarine-lagoonal system were investigated by ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Ten sterols and three triterpenols were identified and quantified, indicating both natural and anthropogenic sources. The relative distributions of sterol and triterpenol showed that the study area is submitted to organic matter (OM) from the Ribeira de Iguape River, seawater, surrounding vegetation, and plankton production. The contribution of these sources depends on the region of the estuarine-lagoonal system and the depth of sediment. Regarding anthropogenic sources, only the samples submitted to freshwater flow from the Ribeira de Iguape River presented concentration of coprostanol higher than the threshold value and diagnostic ratios, coprostanol/(coprostanol + cholestanol) and coprostanol/cholesterol, that indicate moderate contamination by domestic sewage in that area of the estuarine-lagoonal system. Therefore, the approach used herein identified the OM sources and its transport along the Cananéia-Iguape estuarine-lagoonal system (Brazil), which is a complex of lagoonal channels located in a United Nations Educational, Scientific and Cultural Organization (UNESCO) Biosphere Reserve.

Publisher

Hindawi Limited

Subject

Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3