Bacterial carbon sources in coastal sediments: a cross-system analysis based on stable isotope data of biomarkers

Author:

Bouillon S.,Boschker H. T. S.

Abstract

Abstract. Coastal ecosystems are typically highly productive, and the sediments in these systems receive organic matter from a variety of local and imported sources. To assess if general patterns are present in the origin of carbon sources for sedimentary bacteria and their relation to the origin of the sediment organic carbon pool, we compiled both literature and new data on δ13C of bacterial biomarkers (the phospholipid derived fatty acids i+a15:0), along with δ13C data on sediment organic carbon (δ13CTOC) and macrophyte biomass from a variety of typical near-coastal systems. These systems included mangroves, salt marshes (both C3 and C4-dominated sites), seagrass beds, and macroalgae-based systems, as well as unvegetated sediments. First, our δ13Ci+a15:0 data showed large variability over the entire range of δ13CTOC, indicating that in many settings, bacteria may depend on carbon derived from various origins. Secondly, systems where local macrophyte production is the major supplier of organic carbon for in situ decomposition are generally limited to organic carbon-rich, peaty sites (TOC>10 wt%), which are likely to make up only a small part of the global area of vegetated coastal systems. These carbon-rich sediments also provided a field based estimate of isotopic fractionation between bacterial carbon sources and biomarkers (-3.7±2.1), which is similar to the expected value of about -3 associated with the biosynthesis of fatty acids. Thirdly, only in systems with low TOC (below ~1 wt%), we consistently found that bacteria were selectively utilizing an isotopically enriched carbon source, which may be root exudates but more likely is derived from microphytobenthos. In other systems with between ~1 and 10 wt% TOC, bacteria appear to show on average little selectivity and δ13Ci+a15:0 data generally follow the δ13CTOC, even in systems where the TOC is a mixture of algal and macrophyte sources that generally are believed to have a very different degradability.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3