The Development of an Intelligent Monitoring System for Agricultural Inputs Basing on DBN-SOFTMAX

Author:

Yang Ling1,Sarath Babu V.2,Zou Juan1,Cai Xu Can1,Wu Ting1ORCID,Lin Li2ORCID

Affiliation:

1. School of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China

2. Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China

Abstract

To solve the problem of unreliability of traceability information in the traceability system, we developed an intelligent monitoring system to realize the real-time online acquisition of physicochemical parameters of the agricultural inputs and to predict the varieties of input products accurately. Firstly, self-developed monitoring equipment was used to realize real-time acquisition, format conversion and pretreatment of the physicochemical parameters of inputs, and real-time communication with the cloud platform server. In this process, LoRa technology was adopted to solve the wireless communication problems between long-distance, low-power, and multinode environments. Secondly, a deep belief network (DBN) model was used to learn unsupervised physicochemical parameters of input products and extract the input features. Finally, these input features were utilized on the softmax classifier to establish the classification model, which could accurately predict the varieties of agricultural inputs. The results showed that when six kinds of pesticides, chemical fertilizers, and other agricultural inputs were predicted through the system, the prediction accuracy could reach 98.5%. Therefore, the system can be used to monitor the varieties of agrarian inputs effectively and use in real-time to ensure the authenticity and accuracy of the traceability information.

Funder

Chinese Postdoctoral Science Foundation

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3