Affiliation:
1. School of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
2. Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
Abstract
To solve the problem of unreliability of traceability information in the traceability system, we developed an intelligent monitoring system to realize the real-time online acquisition of physicochemical parameters of the agricultural inputs and to predict the varieties of input products accurately. Firstly, self-developed monitoring equipment was used to realize real-time acquisition, format conversion and pretreatment of the physicochemical parameters of inputs, and real-time communication with the cloud platform server. In this process, LoRa technology was adopted to solve the wireless communication problems between long-distance, low-power, and multinode environments. Secondly, a deep belief network (DBN) model was used to learn unsupervised physicochemical parameters of input products and extract the input features. Finally, these input features were utilized on the softmax classifier to establish the classification model, which could accurately predict the varieties of agricultural inputs. The results showed that when six kinds of pesticides, chemical fertilizers, and other agricultural inputs were predicted through the system, the prediction accuracy could reach 98.5%. Therefore, the system can be used to monitor the varieties of agrarian inputs effectively and use in real-time to ensure the authenticity and accuracy of the traceability information.
Funder
Chinese Postdoctoral Science Foundation
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献