Accurate Identification of Agricultural Inputs Based on Sensor Monitoring Platform and SSDA-HELM-SOFTMAX Model

Author:

Zou Juan12,Jiang Hanjing12,Wang Qingxiu12,Chen Ningxia12,Wu Ting12ORCID,Yang Ling123ORCID

Affiliation:

1. Guangdong Provincial Food Safety Traceability and Control Engineering Technology Research Center, China

2. School of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China

3. Agricultural and Rural Big Data Common Key Technology Innovation Team, Guangzhou, Guangdong 510225, China

Abstract

The unreliability of traceability information on agricultural inputs has become one of the main factors hindering the development of traceability systems. At present, the major detection techniques of agricultural inputs were residue chemical detection at the postproduction stage. In this paper, a new detection method based on sensors and artificial intelligence algorithm was proposed in the detection of the commonly agricultural inputs in Agastache rugosa cultivation. An agricultural input monitoring platform including software system and hardware circuit was designed and built. A model called stacked sparse denoising autoencoder-hierarchical extreme learning machine-softmax (SSDA-HELM-SOFTMAX) was put forward to achieve accurate and real-time prediction of agricultural input varieties. The experiments showed that the combination of sensors and discriminant model could accurately classify different agricultural inputs. The accuracy of SSDA-HELM-SOFTMAX reached 97.08%, which was 4.08%, 1.78%, and 1.58% higher than a traditional BP neural network, DBN-SOFTMAX, and SAE-SOFTMAX models, respectively. Therefore, the method proposed in this paper was proved to be effective, accurate, and feasible and will provide a new online detection way of agricultural inputs.

Funder

Department of Education of Guangdong Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3