DT2008: A Promising New Genetic Resource for Improved Drought Tolerance in Soybean When Solely Dependent on Symbiotic N2Fixation

Author:

Sulieman Saad12,Ha Chien Van13,Nasr Esfahani Maryam14,Watanabe Yasuko1,Nishiyama Rie1,Pham Chung Thi Bao5,Nguyen Dong Van3,Tran Lam-Son Phan1

Affiliation:

1. Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan

2. Department of Agronomy, Faculty of Agriculture, University of Khartoum, 13314 Shambat, Khartoum North, Sudan

3. National Key Laboratory of Plant Cell Biotechnology, Agricultural Genetics Institute, Vietnamese Academy of Agricultural Science, Hanoi 100000, Vietnam

4. Department of Biology, Lorestan University, Khorramabad 68151-44316, Iran

5. Department of Mutation and Heterosis Breeding, Agricultural Genetics Institute, Vietnamese Academy of Agricultural Science, Hanoi 100000, Vietnam

Abstract

Water deficit is one of the major constraints for soybean production in Vietnam. The soybean breeding research efforts conducted at the Agriculture Genetics Institute (AGI) of Vietnam resulted in the development of promising soybean genotypes, suitable for the drought-stressed areas in Vietnam and other countries. Such a variety, namely, DT2008, was recommended by AGI and widely used throughout the country. The aim of this work was to assess the growth of shoots, roots, and nodules of DT2008 versus Williams 82 (W82) in response to drought and subsequent rehydration in symbiotic association as a means to provide genetic resources for genomic research. Better shoot, root, and nodule growth and development were observed in the cultivar DT2008 under sufficient, water deficit, and recovery conditions. Our results represent a good foundation for further comparison of DT2008 and W82 at molecular levels using high throughput omic technologies, which will provide huge amounts of data, enabling us to understand the genetic network involved in regulation of soybean responses to water deficit and increasing the chances of developing drought-tolerant cultivars.

Funder

Vietnam Ministry of Science and Technology

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3