Identification of Competing Endogenous RNAs (ceRNAs) Network Associated with Drought Tolerance in Medicago truncatula with Rhizobium Symbiosis

Author:

Jing JiaxianORCID,Yang Peizhi,Wang Yue,Qu Qihao,An Jie,Fu Bingzhe,Hu Xiaoning,Zhou Yi,Hu Tianming,Cao Yuman

Abstract

Drought, bringing the risks of agricultural production losses, is becoming a globally environmental stress. Previous results suggested that legumes with nodules exhibited superior drought tolerance compared with the non-nodule group. To investigate the molecular mechanism of rhizobium symbiosis impacting drought tolerance, transcriptome and sRNAome sequencing were performed to identify the potential mRNA–miRNA–ncRNA dynamic network. Our results revealed that seedlings with active nodules exhibited enhanced drought tolerance by reserving energy, synthesizing N-glycans, and medicating systemic acquired resistance due to the early effects of symbiotic nitrogen fixation (SNF) triggered in contrast to the drought susceptible with inactive nodules. The improved drought tolerance might be involved in the decreased expression levels of miRNA such as mtr_miR169l-5p, mtr_miR398b, and mtr_miR398c and its target genes in seedlings with active nodules. Based on the negative expression pattern between miRNA and its target genes, we constructed an mRNA–miR169l–ncRNA ceRNA network. During severe drought stress, the lncRNA alternative splicings TCONS_00049507 and TCONS_00049510 competitively interacted with mtr_miR169l-5p, which upregulated the expression of NUCLEAR FACTOR-Y (NF-Y) transcription factor subfamily NF-YA genes MtNF-YA2 and MtNF-YA3 to regulate their downstream drought-response genes. Our results emphasized the importance of SNF plants affecting drought tolerance. In conclusion, our work provides insight into ceRNA involvement in rhizobium symbiosis contributing to drought tolerance and provides molecular evidence for future study.

Funder

National Natural Science Foundation of China

China Agriculture Research System of MOF and MARA

Wetland and Grassland Research Center of Shaanxi Academy of Forestry

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference85 articles.

1. National Centers for Environmental Information (2018). DROUGHT: Monitoring Economic, Environmental, and Social Impacts, National Centers for Environmental Information.

2. Drought Stress Responses in Soybean Roots and Nodules;Front. Plant Sci.,2016

3. Kumar, M., Kumar Patel, M., Kumar, N., Bajpai, A.B., and Siddique, K.H.M. (2021). Metabolomics and Molecular Approaches Reveal Drought Stress Tolerance in Plants. Int. J. Mol. Sci., 22.

4. Gelaw, T.A., and Sanan-Mishra, N. (2021). Non-Coding RNAs in Response to Drought Stress. Int. J. Mol. Sci., 22.

5. MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13;Plant Sci.,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3