Design of Multilayer Frequency-Selective Surfaces by Equivalent Circuit Method and Basic Building Blocks

Author:

Xu Yuan1ORCID,He Mang1ORCID

Affiliation:

1. School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China

Abstract

An equivalent circuit method (ECM) is proposed for the design of multilayer frequency-selective surfaces (FSSs). In contrast to the existing ECMs that were developed mainly for the analysis of the properties of a given FSS, the presented ECM aims at providing the initial design parameters of an FSS from the desired frequency response. In this method, four types of basic FSS structures are used as the building blocks to construct the multilayer FSSs, and their surface impedances in both the normal- and the oblique-incidence situations are studied in detail in order to achieve more accurate equivalent circuit (EC) representation of the entire FSS. For a general FSS design with expected frequency response, the EC parameters and the geometrical sizes of the required basic building blocks can be synthesized from a few typical S-parameter (S11/S12) samplings of the response curves via a simple least-square curve-fitting process. The effectiveness and accuracy of the method are shown by the designs of a band-pass FSS with steep falling edge and a miniaturized band-pass FSS with out-of-band absorption. The prototype of one design is fabricated, and the measured frequency response agrees well with the numerical results of the ECM and the full-wave simulations.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ultrathin and conformal frequency selective surfaces bandpass filter to eliminate the 5G bands on radio altimeters;Microwave and Optical Technology Letters;2024-01

2. Proposal of Technique for Analysis of Complementary Frequency Selective Surfaces;Radio Science;2023-10

3. A Single Layer Frequency Selective Surface for Dual Communication and Localization Applications;2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (USNC-URSI);2023-07-23

4. A Low-Profile UWB Wide-Angle Scanning Phased Array;2023 International Conference on Microwave and Millimeter Wave Technology (ICMMT);2023-05-14

5. Broadband absorber with dispersive metamaterials;Nanophotonics;2023-03-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3