TSTELM: Two-Stage Transfer Extreme Learning Machine for Unsupervised Domain Adaptation

Author:

Zang Shaofei1ORCID,Li Xinghai1,Ma Jianwei1ORCID,Yan Yongyi1ORCID,Gao Jiwei1ORCID,Wei Yuan2ORCID

Affiliation:

1. College of Information Engineering, Henan University of Science and Technology, Luoyang 471000, China

2. College of Vehicle and Traffic Engineering, Henan University of Science and Technology, Luoyang 471000, China

Abstract

As a single-layer feedforward network (SLFN), extreme learning machine (ELM) has been successfully applied for classification and regression in machine learning due to its faster training speed and better generalization. However, it will perform poorly for domain adaptation in which the distributions between training data and testing data are inconsistent. In this article, we propose a novel ELM called two-stage transfer extreme learning machine (TSTELM) to solve this problem. At the statistical matching stage, we adopt maximum mean discrepancy (MMD) to narrow the distribution difference of the output layer between domains. In addition, at the subspace alignment stage, we align the source and target model parameters, design target cross-domain mean approximation, and add the output weight approximation to further promote the knowledge transferring across domains. Moreover, the prediction of test sample is jointly determined by the ELM parameters generated at the two stages. Finally, we investigate the proposed approach in classification task and conduct experiments on four public domain adaptation datasets. The result indicates that TSTELM could effectively enhance the knowledge transfer ability of ELM with higher accuracy than other existing transfer and non-transfer classifiers.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3