Discriminative Extreme Learning Machine with Cross-Domain Mean Approximation for Unsupervised Domain Adaptation

Author:

Zang Shaofei1ORCID,Li Xinghai1,Ma Jianwei1ORCID,Yan Yongyi1ORCID,Lv Jinfeng1,Wei Yuan2ORCID

Affiliation:

1. College of Information Engineering, Henan University of Science and Technology, Luoyang 471000, China

2. College of Vehicle and Traffic Engineering, Henan University of Science and Technology, Luoyang 471000, China

Abstract

Extreme Learning Machine (ELM) is widely used in various fields because of its fast training and high accuracy. However, it does not primarily work well for Domain Adaptation (DA) in which there are many annotated data from auxiliary domain and few even no annotated data in target domain. In this paper, we propose a new variant of ELM called Discriminative Extreme Learning Machine with Cross-Domain Mean Approximation (DELM-CDMA) for unsupervised domain adaptation. It introduces Cross-Domain Mean Approximation (CDMA) into the hidden layer of ELM to reduce distribution discrepancy between domains for domain bias elimination, which is conducive to train a high accuracy ELM on annotated data from auxiliary domains for target tasks. Linear Discriminative Analysis (LDA) is also adopted to improve the discrimination of learned model and obtain higher accuracy. Moreover, we further provide a Discriminative Kernel Extreme Learning Machine with Cross-Domain Mean Approximation (DKELM-CDMA) as the kernelization extension of DELM-CDMA. Some experiments are performed to investigate the proposed approach, and the result shows that DELM-CDMA and DKELM-CDMA could effectively extend ELM suitable for domain adaptation and outperform ELM and many other domain adaptation approaches.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3