Extraction and Characterization of Microfibrillated Cellulose from Discarded Cotton Fibers through Catalyst Preloaded Fenton Oxidation

Author:

Xu Xianmeng1ORCID,Lu Ning1,Wang Shunmin1ORCID,Huang Mengqi1,Qu Shenglong1,Xuan Feng1

Affiliation:

1. College of Biological and Food Engineering, Bozhou University, Tangwang Road, Bozhou 236000, Anhui, China

Abstract

With rapid developments in science and technology, mankind is faced with the dual severe challenges of obtaining needed resources and protecting the environment. The need for sustainable development strategies has become a global consensus. As the most abundant biological resource on Earth, cellulose is an inexhaustible, natural, and renewable polymer. Microfibrillated cellulose (MFC) offers the advantages of abundant raw materials, high strength, and good degradability. Simultaneously, MFC prepared from natural materials has high practical significance due to its potential application in nanocomposites. In this study, we reported the preparation of MFCs from discarded cotton with short fibers by a combination of Fe2+ catalyst-preloading Fenton oxidation and a high-pressure homogenization cycle method. Lignin was removed from the discarded cotton with an acetic acid and sodium chlorite mixed solution. Then, the cotton was treated with NaOH solution to obtain cotton cellulose and oxidized using Fenton oxidation to obtain Fenton-oxidized cotton cellulose. The carboxylic acid content of the oxidized cotton cellulose was 126.87 μmol/g, and the zeta potential was −43.42 mV. Then, the Fenton-oxidized cotton cellulose was treated in a high-speed blender under a high-pressure homogenization cycle to obtain the MFC with a yield of 91.58%. Fourier transform infrared spectroscopy (FTIR) indicated that cotton cellulose was effectively oxidized by Fe2+ catalyst-preloading Fenton oxidation. The diameter of the MFC ranged from several nanometers to a few micrometers as determined by scanning electron microscopy (SEM), the crystallinity index (CrI) of the MFC was 83.52% according to X-ray diffraction (XRD), and the thermal stability of the MFC was slightly reduced compared to cotton cellulose, as seen through thermogravimetric analysis (TGA). The use of catalyst-preloading Fenton oxidation technology, based on the principles of microreactors, along with high-pressure homogenization, was a promising technique to prepare MFCs from discarded cotton.

Funder

Natural Science Foundation of Anhui Province

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3