Cloud-Based Fusion of Residual Exploitation-Based Convolutional Neural Network Models for Image Tampering Detection in Bioinformatics

Author:

Doegar Amit1ORCID,Hiriyannaiah Srinidhi2ORCID,Siddesh G. M.3ORCID,Srinivasa K. G.1ORCID,Dutta Maitreyee1ORCID

Affiliation:

1. Department of Computer Science and Engineering, NITTTR, Chandigarh, India

2. Department of Computer Science and Engineering, Ramaiah Institute of Technology, Bangalore, India

3. Department of Information Science and Engineering, Ramaiah Institute of Technology, Bangalore, India

Abstract

Cloud computing has evolved in various application areas such as medical imaging and bioinformatics. It raises the issues of privacy and tampering in the images especially related to the medical field and bioinformatics for various reasons. The digital images are quite vulnerable to be tampered by the interceptors. The credibility of individuals can transform through falsified information in the images. Image tampering detection is an approach to identifying and finding the tampered components in the image. For the efficient detection of image tampering, the sufficient number of features are required which can be achieved by a deep learning architecture-based models without manual feature extraction of functions. In this research work, we have presented and implemented a cloud-based residual exploitation-based deep learning architectures to detect whether or not an image is being tampered. The proposed approach is implemented on the publicly available benchmark MICC-F220 dataset with the k -fold cross-validation approach to avoid the overfitting problem and to evaluate the performance metrics.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3