PP-JPEG: A Privacy-Preserving JPEG Image-Tampering Localization

Author:

Jena Riyanka1,Singh Priyanka2,Mohanty Manoranjan3ORCID

Affiliation:

1. Research Group for Security and Privacy, Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar 382004, India

2. School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane 4072, Australia

3. School of Mathematical and Physical Science, University of Technology Sydney, Ultimo 2007, Australia

Abstract

The widespread availability of digital image-processing software has given rise to various forms of image manipulation and forgery, which can pose a significant challenge in different fields, such as law enforcement, journalism, etc. It can also lead to privacy concerns. We are proposing that a privacy-preserving framework to encrypt images before processing them is vital to maintain the privacy and confidentiality of sensitive images, especially those used for the purpose of investigation. To address these challenges, we propose a novel solution that detects image forgeries while preserving the privacy of the images. Our method proposes a privacy-preserving framework that encrypts the images before processing them, making it difficult for unauthorized individuals to access them. The proposed method utilizes a compression quality analysis in the encrypted domain to detect the presence of forgeries in images by determining if the forged portion (dummy image) has a compression quality different from that of the original image (featured image) in the encrypted domain. This approach effectively localizes the tampered portions of the image, even for small pixel blocks of size 10×10 in the encrypted domain. Furthermore, the method identifies the featured image’s JPEG quality using the first minima in the energy graph.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3