Urban Rail Transit System Network Reliability Analysis Based on a Coupled Map Lattice Model

Author:

Wu Shaojie1ORCID,Zhu Yan1,Li Ning2,Wang Yizeng3ORCID,Wang Xingju4,Sun Daniel Jian5ORCID

Affiliation:

1. State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

2. Ulanqab Vocational College, Ulanqab 012000, Inner Mongolia, China

3. School of Communication and Information Engineering, Shanghai University, Shanghai, 200444, China

4. Transportation School, Shijiazhuang Tiedao University, Shijiazhuang 050043, Hebei, China

5. Smart City and Intelligent Transportation (SCIT) Center, School of Design, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

During the last twenty years, the complex network modeling approach has been introduced to assess the reliability of rail transit networks, in which the dynamic performance involving passenger flows have attracted more attentions during operation stages recently. This paper proposes the passenger-flow-weighted network reliability evaluation indexes, to assess the impact of passenger flows on network reliability. The reliability performances of the rail transit network and passenger-flow-weighted one are analyzed from the perspective of a complex network. The actual passenger flow weight of urban transit network nodes was obtained from the Shanghai Metro public transportation card data, which were used to assess the reliability of the passenger-flow-weighted network. Furthermore, the dynamic model of the Shanghai urban rail transit network was constructed based on the coupled map lattice (CML) model. Then, the processes of cascading failure caused by network nodes under different destructive situations were simulated, to measure the changes of passenger-flow-weighted network reliability during the processes. The results indicate that when the scale of network damage attains 50%, the reliability of the passenger-flow-weighted network approaches zero. Consequently, taking countermeasures during the initial stage of network cascading may effectively prevent the disturbances from spreading in the network. The results of the paper could provide guidelines for operation management, as well as identify the unreliable stations within passenger-flow-weighted networks.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3