Agent-Based Modelling and Simulation to Assess the Impact of Parking Reservation System

Author:

Ni Xun-You12ORCID,Sun Daniel (Jian)123ORCID

Affiliation:

1. State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

2. China Institute of Urban Governance, Shanghai Jiao Tong University, Shanghai 200240, China

3. Center for ITS and UAV Applications Research, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

With the increasing popularity of smart phones, Parking Reservation System (PRS) becomes practical to reduce the travel time in cruising for vacant spaces. The aim of this study is to assess the impact of PRS explicitly. This paper was started with analyzing the processes of cruising for vacant spaces and making parking reservation decisions. The vehicles were divided into two categories: the intelligent vehicles and the regular ones. Only the intelligent vehicles have the ability to make a parking reservation beforehand, while the regular ones have to cruise for vacant spaces. All involved components were treated as different agents, including vehicles, parking lots, network, and management center. Based on this, agent-based simulation was introduced to evaluate the performances of the scenarios with different penetration rates. The simulation results indicate the average travel time increases with the improvement of the penetration rates for the regular vehicles. The assessment method presented in this study would assist in promoting the performances of PRS in urban areas.

Funder

Ministry of Education, China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3