Postprocessing of Accidental Scenarios by Semi-Supervised Self-Organizing Maps

Author:

Di Maio Francesco1ORCID,Rossetti Roberta1,Zio Enrico12

Affiliation:

1. Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy

2. Chair on System Science and Energetic Challenge, Fondation EDF, Ecole Centrale, Supelec, Paris, France

Abstract

Integrated Deterministic and Probabilistic Safety Analysis (IDPSA) of dynamic systems calls for the development of efficient methods for accidental scenarios generation. The necessary consideration of failure events timing and sequencing along the scenarios requires the number of scenarios to be generated to increase with respect to conventional PSA. Consequently, their postprocessing for retrieving safety relevant information regarding the system behavior is challenged because of the large amount of generated scenarios that makes the computational cost for scenario postprocessing enormous and the retrieved information difficult to interpret. In the context of IDPSA, the interpretation consists in the classification of the generated scenarios as safe, failed, Near Misses (NMs), and Prime Implicants (PIs). To address this issue, in this paper we propose the use of an ensemble of Semi-Supervised Self-Organizing Maps (SSSOMs) whose outcomes are combined by a locally weighted aggregation according to two strategies: a locally weighted aggregation and a decision tree based aggregation. In the former, we resort to the Local Fusion (LF) principle for accounting the classification reliability of the different SSSOM classifiers, whereas in the latter we build a classification scheme to select the appropriate classifier (or ensemble of classifiers), for the type of scenario to be classified. The two strategies are applied for the postprocessing of the accidental scenarios of a dynamic U-Tube Steam Generator (UTSG).

Publisher

Hindawi Limited

Subject

Nuclear Energy and Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3