Risk-Based Clustering for Near Misses Identification in Integrated Deterministic and Probabilistic Safety Analysis

Author:

Di Maio Francesco1ORCID,Vagnoli Matteo1,Zio Enrico12

Affiliation:

1. Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy

2. Chair on System Science and Energetic Challenge, Fondation EDF-Electricite de France, Ecole Centrale Paris and Supelec, Chatenay-Malabry Cedex, 92295 Paris, France

Abstract

In integrated deterministic and probabilistic safety analysis (IDPSA), safe scenarios and prime implicants (PIs) are generated by simulation. In this paper, we propose a novel postprocessing method, which resorts to a risk-based clustering method for identifying Near Misses among the safe scenarios. This is important because the possibility of recovering these combinations of failures within a tolerable grace time allows avoiding deviations to accident and, thus, reducing the downtime (and the risk) of the system. The postprocessing risk-significant features for the clustering are extracted from the following: (i) the probability of a scenario to develop into an accidental scenario, (ii) the severity of the consequences that the developing scenario would cause to the system, and (iii) the combination of (i) and (ii) into the overall risk of the developing scenario. The optimal selection of the extracted features is done by a wrapper approach, whereby a modified binary differential evolution (MBDE) embeds aK-means clustering algorithm. The characteristics of the Near Misses scenarios are identified solving a multiobjective optimization problem, using the Hamming distance as a measure of similarity. The feasibility of the analysis is shown with respect to fault scenarios in a dynamic steam generator (SG) of a nuclear power plant (NPP).

Publisher

Hindawi Limited

Subject

Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3