Automated Facial Expression Recognition Framework Using Deep Learning

Author:

Saeed Saad1,Shah Asghar Ali1,Ehsan Muhammad Khurram1ORCID,Amirzada Muhammad Rizwan2,Mahmood Asad3ORCID,Mezgebo Teweldebrhan4ORCID

Affiliation:

1. Faculty of Engineering, Bahria University, Lahore Campus, Lahore, Pakistan

2. Faculty of Engineering and Computer Science, National University of Modern Languages, Islamabad, Pakistan

3. Department of Electrical and Computer Engineering, Comsats University, Islamabad, Wah Campus, Pakistan

4. Ethio Telecom, Addis Ababa, Ethiopia

Abstract

Facial expression is one of the most significant elements which can tell us about the mental state of any person. A human can convey approximately 55% of information nonverbally and the remaining almost 45% through verbal communication. Automatic facial expression recognition is presently one of the most difficult tasks in the computer science field. Applications of facial expression recognition (FER) are not just limited to understanding human behavior and monitoring person’s mood and the mental state of humans. It is also penetrating into other fields such as criminology, holographic, smart healthcare systems, security systems, education, robotics, entertainment, and stress detection. Currently, facial expressions are playing an important role in medical sciences, particularly helping the patients with bipolar disease, whose mood changes very frequently. In this study, an algorithm, automated framework for facial detection using a convolutional neural network (FD-CNN) is proposed with four convolution layers and two hidden layers to improve accuracy. An extended Cohn-Kanade (CK+) dataset is used that includes facial images of different males and females with expressions such as anger, fear, disgust, contempt, neutral, happy, sad, and surprise. In this study, FD-CNN is performed in three major steps that include preprocessing, feature extraction, and classification. By using this proposed method, an accuracy of 94% is obtained in FER. In order to validate the proposed algorithm, K-fold cross-validation is performed. After validation, sensitivity and specificity are calculated which are 94.02% and 99.14%, respectively. Furthermore, the f1 score, recall, and precision are calculated to validate the quality of the model which is 84.07%, 78.22%, and 94.09%, respectively.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3