Strain Distribution Evaluation of Rat Tibia under Axial Compressive Load by Combining Strain Gauge Measurement and Finite Element Analysis

Author:

Gao Jiazi12ORCID,Liu Bei2ORCID,Zhang Min2ORCID,Gong He12ORCID,Gao Bingzhao1

Affiliation:

1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, China

2. Department of Engineering Mechanics, Nanling Campus, Jilin University, Changchun, China

Abstract

This study is aimed at providing an effective method for determining strain-load relationship and at quantifying the strain distribution within the whole tibia under axial compressive load on rats. Rat tibial models with axial compressive load were designed. Strains in three directions (0°, 45°, and 90°) at the proximal shaft of the tibia were measured by using a strain gauge rosette, which was used to calculate the maximum and minimum principal strains. Moreover, the strain at the midshaft of the tibia was measured by a single-element strain gauge. The slopes of the strain-load curves with different peak loads were calculated to assess the stability of the strain gauge measurement. Mechanical environment in the whole tibia by the axial compressive load was quantified using finite element analysis (FEA) based on microcomputed tomography images. The von Mises elastic strain distributions of the whole tibiae were evaluated. Slopes of the strain-load curves showed no significant differences among different peak loads (ANOVA; P>0.05), indicating that the strain-load relationship obtained from the strain gauge measurement was reasonable and stable. The FEA results corresponded to the experimental results with an error smaller than 15% (paired Student’s t-test, P>0.05), signifying that the FEA can simulate the experiment reasonably. FEA results showed that the von Mises elastic strain was the lowest in the middle and gradually increased to both sides along the lateral direction, with the maximal von Mises elastic strain being observed on the posterior side under the distal tibiofibular synostosis. The method of strain gauge measurements and FEA used in this study can provide a feasible way to obtain the mechanical environment of the tibiae under axial compressive load on the rats and serve as a reference for further exploring the mechanical response of the bone by axial compressive load.

Funder

State Key Laboratory of Automotive Simulation and Control

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3