Cancellous bone adaptation to tibial compression is not sex dependent in growing mice

Author:

Lynch Maureen E.1,Main Russell P.1,Xu Qian1,Walsh Daniel J.1,Schaffler Mitchell B.2,Wright Timothy M.3,van der Meulen Marjolein C. H.13

Affiliation:

1. Mechanical and Aerospace Engineering, Cornell University, Ithaca;

2. Biomedical Engineering, The City College of New York, New York; and

3. Department of Biomechanics, Hospital for Special Surgery, New York, New York

Abstract

Mechanical loading can be used to increase bone mass and thus attenuate pathological bone loss. Because the skeleton's adaptive response to loading is most robust before adulthood, elucidating sex-specific responses during growth may help maximize peak bone mass. This study investigated the effect of sex on the response to controlled, in vivo mechanical loading in growing mice. Ten-week-old male and female C57Bl/6 mice underwent noninvasive compression of the left tibia. Peak loads of −11.5 N were applied, corresponding to +1,200 με at the tibial midshaft in both sexes. Cancellous bone mass, architecture, and dynamic formation in the proximal metaphysis were compared between loaded and control limbs via micro-computed tomography and histomorphometry. The strain environment of the proximal metaphysis during loading was characterized using finite element analysis. Both sexes responded to tibial compression through increased bone mass and altered architecture. Cancellous bone mass and tissue density were enhanced in loaded limbs relative to control limbs in both sexes through trabecular thickening and reduced separation. Changes in mass were due to increased cellular activity in loaded limbs compared with control limbs. Adaptation to loading increased the proportion of load transferred by the cancellous bone in the proximal metaphysis. For all cancellous measures, the response to tibial compression did not differ between male and female mice. When similar strains are engendered in males and females, the adaptive response in cancellous bone to mechanical loading does not depend on sex.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3