Transient Pressure Behavior of a Horizontal Well in a Naturally Fractured Gas Reservoir with Dual-Permeability Flow and Stress Sensitivity Effect

Author:

Wang Guiqin1ORCID,Zhang Rui1,Cui Liangliang1

Affiliation:

1. School of Petroleum and Environmental Engineering, Yan’an University, Yan’an 716000, China

Abstract

Dual-permeability flow and stress sensitivity effect are two fundamental issues that have been widely investigated in transient pressure analysis for horizontal wells. However, few attempts have been made to simulate the combined effects of dual-permeability flow and stress-dependent fracture permeability on the pressure transient dynamics of a horizontal well in a naturally fractured gas reservoir. In this approach, an analytical model is proposed to integrate the complexities of pressure-dependent PVT properties, dual-permeability flow behavior, and stress-dependent fracture permeability characteristics. The nonlinearity of the mathematical model is weakened by using Pedrosa’s transform formulation. Then, the Laplace integral transformation and separation of variables are applied to solve the model. Based on the solution of the mathematical model, a series of new-type curves are drawn to make a precise observation of different flow regimes. The main differences between the proposed model and the traditional models are discussed, and the effects of the permeability modulus of fractures, storability ratio, interporosity flow factor, and skin factor on transient pressure response are also examined. The results show that there are obvious differences in transient pressure dynamic curves between the proposed model and traditional models. The stress sensitivity effect plays a significant role in the intermediate flow period and the late-time pseudoradial flow period. The dual-permeability flow behavior mainly affects the early transient and interporosity flow stages. The proposed model can accurately simulate the transient pressure behaviors of a horizontal well in a naturally fractured gas reservoir with a dual-permeability flow and stress sensitivity effect. The novel model can be used to interpret pressure signals with accurate matching results and more reasonable interpreted parameters.

Funder

2021 Innovation and Entrepreneurship Training Projects for College Students in Shanxi Province

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3