Integrated flow model for evaluating maximum fracture spacing in horizontal wells

Author:

Liu WenchaoORCID,Liu ChenORCID,Duan Yaoyao,Yu JieORCID,Sun Hedong,Yan Xuemei,Qiao ChengchengORCID,Yang YuejieORCID

Abstract

Multi-stage fractured horizontal wells are extensively used in unconventional reservoir; hence, optimizing the spacing between these hydraulic fractures is essential. Fracture spacing is an important factor that influences the production efficiency and costs. In this study, maximum fracture spacing in low-permeability liquid reservoirs is studied by building an integrated flow model incorporating key petrophysical characteristics. First, a kinematic equation for non-Darcy seepage flow is constructed using the fractal theory to consider the non-homogeneous characteristics of the stimulated rock volume area (StRV) and its stress sensitivity. Then, the kinematic equation is used to build an integrated mathematical model of one-dimensional steady-state flow within the StRV to analytically determine the pressure distribution in StRV. The resultant pressure distribution is utilized to propose an optimal value for the maximum fracture spacing. Finally, the effects of fractal index, initial matrix permeability, depletion, and stress sensitivity coefficient on the limit disturbed distance and pressure distribution are studied. This study not only enriches the fundamental theory of nonlinear seepage flow mechanics but also provides some technical guidance for choosing appropriate fracture spacing in horizontal wells.

Funder

Natural Science Foundation of China

PetrolChina Research Institute of Petroleum Exploration and Development Project

CNPC Innovation Foundation

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3