RoC: Robust and Low-Complexity Wireless Indoor Positioning Systems for Multifloor Buildings Using Location Fingerprinting Techniques

Author:

Maneerat Kriangkrai1ORCID,Kaemarungsi Kamol1ORCID

Affiliation:

1. National Electronics and Computer Technology Center, NSTDA, Pathumthani, Thailand

Abstract

Most existing wireless indoor positioning systems have only success performance requirements in normal operating situations whereby all wireless equipment works properly. There remains a lack of system reliability that can support emergency situations when there are some reference node failures, such as in earthquake and fire scenarios. Additionally, most systems do not incorporate environmental information such as temperature and relative humidity level into the process of determining the location of objects inside the building. To address these gaps, we propose a novel integrated framework for wireless indoor positioning systems based on a location fingerprinting technique which is called the Robust and low Complexity indoor positioning systems framework (RoC framework). Our proposed integrated framework consists of two essential indoor positioning processes: the system design process and the localization process. The RoC framework aims to achieve robustness in the system design structure and reliability of the target location during the online estimation phase either under a normal situation or when some reference nodes (RNs) have failed. The availability of low-cost temperature and relative humidity sensors can provide additional information for the location fingerprinting technique and thereby reduce location estimation complexity by including this additional information. Experimental results and comparative performance evaluation revealed that the RoC framework can achieve robustness in terms of the system design structure, whereby it was able to provide the highest positioning performance in either fault-free or RN-failure scenarios. Moreover, in the online estimation phase, the proposed framework can provide the highest reliability of the target location under the RN-failure scenarios and also yields the lowest computational complexity in online searching compared to other techniques. Specifically, when compared to the traditional weighted k-nearest neighbor techniques (WKNN) under the 30% RN-failure scenario at Building B, the proposed RoC framework shows 74.1% better accuracy performance and yields 55.1% lower computational time than the WKNN.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3