Performance Improvement Design of Bluetooth Low Energy-Based Wireless Indoor Positioning Systems

Author:

Maneerat Kriangkrai1ORCID,Kaemarungsi Kamol1ORCID

Affiliation:

1. National Electronics and Computer Technology Center, NSTDA, Khlong Luang, Pathumthani, Thailand

Abstract

The systematic design of wireless indoor positioning systems can offer another essential approach to achieving the required performance objectives aside from using suitable location determination algorithms. This manuscript investigates Bluetooth Low Energy- (BLE-) based wireless indoor positioning systems and how adjusting the system design parameters can affect their location determination performance. Without placing emphasis on sophisticated location determination algorithms, this work provides guidelines for how a system designer can control the balance among multiple positioning performance metrics. For example, a balance between the number of installed reference nodes and the accuracy performance can be chosen to control deployment costs, such as the installation expense, infrastructure expense, and installation time. To demonstrate our baseline study, we compare three different designs of BLE wireless indoor positioning system that utilize location determination algorithms based on proximity, trilateration, and scene analysis. These designs are also compared over two different building sizes, which are medium and large. The design model and performance analysis data were based on our actual implementation of the hardware and software system for a BLE wireless indoor positioning system. Specifically, the received signal strength indication data were collected from our prototype reference nodes. The findings from our study indicated that a proximity-based system can only provide fair location accuracy performance (average error distance of 5 m to 7 m) making it unsuitable for applications that require high accuracy. For medium location accuracy performance (average error distance of 3 m to 5 m), the trilateration-based system can achieve the highest efficiency in terms of number of installed reference nodes over the accuracy. The trilateration-based system can reduce the number of installed reference nodes by 154% to achieve the same level of accuracy as the scene analysis-based system. For good location accuracy performance (average error distance ≤ 3 m), the scene analysis-based system yields the highest scalability performance in terms of installed reference nodes. The scene analysis-based system can reduce the number of reference nodes by 40% and 113% to achieve the same accuracy performance when compared with trilateration and proximity-based systems, respectively. Finally, the validation results from the actual installation of Bluetooth-based indoor positioning systems confirmed that our proposed framework can help the system designers to achieve the required performance goal.

Funder

National Electronics and Computer Technology Center

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. UWB Tracking for Forklift in Near-Automate Warehouse;2024 5th Technology Innovation Management and Engineering Science International Conference (TIMES-iCON);2024-06-19

2. A survey of indoor positioning systems based on a six-layer model;Computer Networks;2023-12

3. Reliability Comparison of Programmable Components Usable for Indoor Localization System;Transportation Research Procedia;2023

4. Digital car key scheme based on BLE SIM card;International Conference on Signal Processing and Communication Security (ICSPCS 2022);2022-11-02

5. Accuracy Comparison of Bluetooth Low Energy Indoor Positioning System based on measurement techniques;2022 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia);2022-10-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3