Experimental Analysis of Residual Stress and Bending Strength of Gear Tooth Surface after Shot Peening Treatment

Author:

Liang Dong1ORCID,Meng Sheng1,Chen Yi2,Hua Chengli3

Affiliation:

1. School of Mechatronics & Vehicle Engineering, Chongqing Jiaotong University, No. 66 Xuefu Street, Nan’an District, Chongqing 400074, China

2. College of Mechanical Engineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400030, China

3. City College of Science and Technology, Chongqing University, No. 368 Guangcai Street, Yongchuan District, Chongqing 402167, China

Abstract

The fatigue strength of a gear tooth surface is affected by various factors, which subsequently impacts the transmission performance of gears. Usually, shot peening treatment is carried out during processing to improve the performance of gears. Most current studies focus on theoretical descriptions and simulation analyses of shot peening treatment. However, in this paper, the relationships among shot peening treatment, residual stress, and bending fatigue strength of a gear tooth surface are discussed, through experimental methods. Based on X-ray stress analysis, at select locations on the test samples, the residual stresses on gear tooth surfaces with and without shot peening treatment are determined and contrasted. The results show that shot peening treatment can effectively increase the residual stress on gear tooth surfaces. In addition, an electromagnetic resonance fatigue tester is used to analyze the bending fatigue strength of gear tooth surfaces. The test results indicate that the bending fatigue strength of the gear teeth with shot peening is higher than that of the gear teeth without shot peening. The obtained conclusions lay the foundation for further practical engineering applications of gears.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3