Real-Time Optimal Approach and Capture of ENVISAT Based on Neural Networks

Author:

Li Hongjue12ORCID,Dong Yunfeng12ORCID,Li Peiyun12

Affiliation:

1. School of Astronautics, Beihang University, Beijing 100191, China

2. Key Laboratory of Spacecraft Design Optimization and Dynamic Simulation Technologies, Ministry of Education, Beijing 100191, China

Abstract

A neural network-based controller is developed to enable a chaser spacecraft to approach and capture a disabled Environmental Satellite (ENVISAT). This task is conventionally tackled by framing it as an optimal control problem. However, the optimization of such a problem is computationally expensive and not suitable for onboard implementation. In this work, a learning-based approach is used to rapidly generate the control outputs of the controller based on a series of training samples. These training samples are generated by solving multiple optimal control problems with successive iterations. Then, Radial Basis Function (RBF) neural networks are designed to mimic this optimal control strategy from the generated data. Compared with a traditional controller, the neural network controller is able to generate real-time high-quality control policies by simply passing the input through the feedforward neural network.

Funder

Ministry of Education of the People's Republic of China

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3