Abstract
AbstractThis paper presents a learning algorithm for tuning the parameters of a family of stabilizing nonlinear controllers for orbital tracking, in order to minimize a cost function which combines convergence time and fuel consumption. The main feature of the proposed approach is that it achieves performance optimization while guaranteeing closed-loop stability of the resulting controller. This property is exploited also to restrict the class of admissible controllers and hence to expedite the training process. The learning algorithm is tested on three case studies: two different orbital transfers and a rendezvous mission. Numerical simulations show that the learned control parameters lead to a significant improvement of the considered performance measure.
Funder
Università degli Studi di Siena
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献