Fabrication of Light Extraction Efficiency of Organic Light-Emitting Diodes with 3D Aspherical Microlens by Using Dry Etching Process

Author:

Chen Y. C.1ORCID,Pan C. T.12,Hsieh C. C.3ORCID,Su C. Y.4,Wu H. C.1ORCID,Li W. C.1

Affiliation:

1. Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan

2. Center for Nanoscience & Nanotechnology, National Sun Yat-Sen University, National Science Council Core Facilities Laboratory for Nano-Science and Nano-Technology in Kaohsiung-Pingtung Area, Taiwan

3. Department of the Mechanical and Automation Engineering, National Kaohsiung First University of Science and Technology, Kaohsiung 811, Taiwan

4. Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 106, Taiwan

Abstract

organic light-emitting diode (OLED) can enable a greater artificial contrast ratio and viewing angle compared to liquid crystal display (LCD) because OLED pixels directly emit light. There is a shortcoming that the internal quantum efficiency can reach values close to 100%, but about 80% light disperses because of the difference among the refractive indices of the substrate, anode, indium tin oxide (ITO) film, and air. In this paper, three dimensions aspherical microlens arrays (3D A-MLAs) with substrate modifications are developed to simulate the optical luminous field by using FRED software. This study modified parameters of 3D A-MLAs such as the diameter, fill-factor, aspect ratio, dry etching parameters, and electroforming rates of microlens to improve the extraction efficiency of the OLED. In dry etching, not only the aspect ratio with better extraction rate can be obtained by reactive ion etching (RIE) dry etching, but also an undercutting phenomenon can be avoided. The dimensions of 3D A-MLAs can be accurately controlled in the electroforming process used to make a nickel-cobalt (Ni-Co) metal mold to achieve the designed dimensions. According to the measured results, the average luminance efficacy of the OLEDs with 3D A-MLAs can be enhanced.

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3