Affiliation:
1. School of Applied Physics and Material Engineering, Wuyi University, Jiangmen, Guangdong 529020, China
Abstract
The light extraction efficiency of organic light-emitting diodes (OLED) is greatly limited due to the difference in refractive indexes between materials of OLED. We fabricated OLED with photonic crystal microstructures in the interface between the glass substrate and the ITO anode. The light extraction efficiency can be improved by utilizing photonic crystals; however, the anisotropy effect of light extraction was clearly observed in experiment. To optimize the device performance, the effect of photonic crystal on both light extraction and angular distribution was investigated using finite-difference time domain (FDTD) method. We simulated the photonic crystals with the structure of square lattice and triangle lattice. We analyzed the improvement of these structures in the light extraction efficiency of the OLED and the influence of arrangement, depth, period, and diameter on anisotropy. The optimized geometric parameters were provided, which will provide the theoretical support for designing the high performance OLED.
Funder
Guandong Natural Science Foundation
Subject
General Materials Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献