A Potential Density Gradient Dependent Analysis Scheme for Ocean Multiscale Data Assimilation

Author:

Fu Hongli1ORCID,Yang Jinkun1ORCID,Li Wei1ORCID,Wu Xinrong1,Han Guijun1ORCID,Xie Yuanfu2,Zhang Shaoqing34ORCID,Zhang Xuefeng1,Cao Yingzhi1,Zhang Xiaoshuang1

Affiliation:

1. Key Laboratory of Marine Environmental Information Technology, State Oceanic Administration, National Marine Data and Information Service, Tianjin 300171, China

2. NOAA/Earth System Research Laboratory, Boulder, CO, USA

3. Key Laboratory of Physical Oceanography, MOE China, Ocean University of China, Qingdao 266100, China

4. Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China

Abstract

This study addresses how to maintain oceanic mixing along potential density surface in ocean data assimilation (ODA). It is well known that the oceanic mixing across the potential density surface is much weaker than that along the potential density surface. However, traditional ODA schemes allow the mixing across the potential density surface and thus may result in extra assimilation errors. Here, a new ODA scheme that uses potential density gradient information of the model background to rescale observational adjustment is designed to improve the quality of assimilation. The new scheme has been tested using a regional ocean model within a multiscale 3-dimensional variational framework. Results show that the new scheme effectively prevents the excessive unphysical projection of observational information in the direction across potential density surface and thus improves assimilation quality greatly. Forecast experiments also show that the new scheme significantly improves the model forecast skills through providing more dynamically consistent initial conditions

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3