Application of the Multigrid Data Assimilation Scheme to the China Seas’ Temperature Forecast

Author:

Li Wei1,Xie Yuanfu2,He Zhongjie1,Han Guijun3,Liu Kexiu3,Ma Jirui3,Li Dong3

Affiliation:

1. College of Physical and Environmental Oceanography, Ocean University of China, Qingdao, and National Marine Data and Information Service, State Oceanic Administration, Tianjin, China

2. NOAA/Earth System Research Laboratory, Boulder, Colorado

3. National Marine Data and Information Service, State Oceanic Administration, Tianjin, China

Abstract

Abstract Correlation scales have been used in the traditional scheme of three-dimensional variational data assimilation (3DVAR) to estimate the background (or first guess) error covariance matrix (the 𝗕 matrix in brief) for the numerical forecast and reanalysis of ocean for decades. However, it is challenging to implement this scheme. On the one hand, determining the correlation scales accurately can be difficult. On the other hand, the positive definite of the 𝗕 matrix cannot be guaranteed unless the correlation scales are sufficiently small. Xie et al. indicated that a traditional 3DVAR only corrects certain wavelength errors, and its accuracy depends on the accuracy of the 𝗕 matrix. Generally speaking, the shortwave error cannot be sufficiently corrected until the longwave error is corrected. An inaccurate 𝗕 matrix may mistake longwave errors as shortwave ones, resulting in erroneous analyses. A new 3DVAR data assimilation scheme, called a multigrid data assimilation scheme, is proposed in this paper for quickly minimizing longwave and shortwave errors successively. By assimilating the sea surface temperature and temperature profile observations into a numerical model of the China Seas, this scheme is applied to a retroactive real-time forecast experiment and favorable results are obtained. Compared to the traditional scheme of 3DVAR, this new scheme has higher forecast accuracy and lower root-mean-square errors. Note that the new scheme demonstrates greatly improved numerical efficiency in the analysis procedure.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3