Reduce Muscle Fibrosis through Exercise via NRG1/ErbB2 Modification in Diabetic Rats

Author:

Amani Majid1ORCID,Rahmati Masoud1ORCID,Fathi Mohammad1ORCID,Ahmadvand Hasan2ORCID

Affiliation:

1. Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran

2. Department of Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran

Abstract

Diabetic myopathy refers to the manifestations in the skeletal muscle as a result of altered glucose homeostasis which reflects as fibrosis. Since physical exercise has been indicated a protective strategy for improving glucose metabolism in skeletal muscle, we tested a hypothesis under which the endurance exercise training could reverse the produced skeletal muscle fibrosis by diabetes. Eight-week-old male Wistar rats were randomly assigned into four groups including healthy control (HC), healthy trained (HT), diabetic control (DC), and diabetic trained (DT) groups. Diabetes was induced by a single intraperitoneal injection of streptozotocin (STZ; 45 mg/kg). Rats in the HT and DT groups carried out an exercise program on a motorized treadmill for five days a week over six weeks. Skeletal muscle levels of NRG1and ErbB2 were measured by the Western blot method. Exercise training decreased blood glucose levels in the DT group. Induction of diabetes increased skeletal muscle fibrosis in both the fast extensor digitorum longus (EDL) and slow soleus muscles, while endurance training modified it in diabetic trained rats. Moreover, muscle NRG1and ErbB2 levels were increased in diabetic rats, while training modified muscle NRG1and ErbB2 levels in diabetic trained rats. Our study provides novel evidence that endurance training could modify skeletal muscle fibrosis through NRG1/ErbB2 modification in STZ-induced diabetic rats.

Funder

Lorestan University

Publisher

Hindawi Limited

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3