Efficient Detection of Large-Scale Multimedia Network Information Data Anomalies Based on the Rule-Extracting Matrix Algorithm

Author:

Zhao Jie1ORCID

Affiliation:

1. College of Electronic Information Science, Fujian Jiangxia University, Fuzhou, Fujian 350108, China

Abstract

With the continuous development of multimedia social networks, online public opinion information is becoming more and more popular. The rule extraction matrix algorithm can effectively improve the probability of information data to be tested. The network information data abnormality detection is realized through the probability calculation, and the prior probability is calculated, to realize the detection of abnormally high network data. Practical results show that the rule-extracting matrix algorithm can effectively control the false positive rate of sample data, the detection accuracy is improved, and it has efficient detection performance.

Publisher

Hindawi Limited

Subject

General Computer Science

Reference15 articles.

1. Detection and Characterization of Network Anomalies in Large-Scale RTT Time Series

2. Large-scale IP network data analysis for anomalies detection thanks to SVM

3. Efficient large-scale stance detection in tweets;M. L. Shyu;International Journal of Multimedia Data Engineering & Management,2018

4. Information fusion for efficient target detection in large-scale surveillance Wireless Sensor Networks

5. Leveraging sparsity and low rank for large-scale networks and data science;M. Mardani;Dissertations & Theses Gradworks,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3